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Abstract
The spectrum, electron-density distribution and ground-state correlation energy
of two electrons confined by an anisotropic harmonic oscillator potential have
been studied for different confinement strengths ω by using the quantum
chemical configuration interaction (CI) method employing a large Cartesian
anisotropic Gaussian basis set and a full CI wavefunction. Energy level
diagrams and electron-density distributions are displayed for selected electronic
states and confinement parameters. The total energy and spacing between
energy levels increase in all cases with increasing ω. The energy level structure
cannot be matched by scaling with respect to ω. The correlation energy of the
ground state is comparable in magnitude to that of the helium atom. It increases
for increasing ω. The percentage of the correlation energy with respect to the
total energy of the ground state is considerably larger than that of the helium
atom.

1. Introduction

Recent advances in semiconductor technology have allowed the construction of new quantum
systems, sometimes referred to as artificial atoms [1] or quantum dots [2, 3]. An artificial atom
is essentially a number of electrons confined in a potential well. Another area where spatial
confinement leads to the appearance of new properties of quantum systems is the embedding
of atoms and molecules in nano-cavities, as for example in zeolite cages [4], fullerenes [5, 6]
and in nano-bubbles formed around foreign objects in the environment of liquid helium [7],
etc.

Studies of quantum objects confined by different forms of external potentials have attracted
the attention of both physicists and quantum chemists since the early days of quantum
mechanics. The Schrödinger equation for an electron in a uniform magnetic field confined by
a harmonic oscillator type potential was solved already in 1928 by Fock [8] and investigated
two years later again by Darwin [9]. Since then numerous studies on a variety of confining
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potentials have been published. Special attention has been paid to those potentials which allow
for analytical solutions of the eigenvalue problem of the corresponding Hamiltonian. But only
recently analytical solutions have been obtained for two interacting electrons in an external
harmonic oscillator potential [10–12].

The development of new technologies and experimental techniques has triggered intensive
theoretical studies on modelling spatially confined quantum systems. A review by Jaskólski
gives a broad account of these studies prior to 1996 [13]. A rather complete list of later
studies on confined atoms may be found in a recent paper by Connerade et al [14]. Most of
the previous studies are concerned with one-electron systems [15–22] or with many-electron
atoms described at the Hartree–Fock (HF) level [13, 14, 23]. Studies of the effect of electron
correlation in confined many-electron systems are still limited [24–27]. Special attention has
been paid recently to the study of quantum dots [10, 12, 23–39]. The form of confinement
studied has been rather restricted. An infinite rectangular potential well [15, 17, 38, 40–42] or
other potential wells for which the potential is infinite outside of a certain range of coordinates
have been used in the majority of cases. The harmonic oscillator potential has been used in
most of the investigations of quantum dots. Most studies are limited to ground-state properties.
Only very recently results of several studies on the influence of electron correlation effects
and of the form of the confinement on the spectral properties of the confined system have been
published [43–47].

In this, and in subsequent studies, quantum-chemical models of atoms and molecules
are applied to investigate the effects of spatial confinement on the properties and reactions of
quantum systems. The confined object is described by the HF and configuration interaction (CI)
methods. The spatial confinement is defined by an external one-particle potential introduced
to the N-electron Hamiltonian. The present contribution reports the spectral properties of the
low lying singlet states of a two-electron quantum dot confined by an anisotropic harmonic
oscillator potential. The results for the triplet states will be reported elsewhere [48]. The
spectrum is studied for different geometry and confinement strength ω. Energy level diagrams
and electron-density distributions are displayed for selected electronic states and confinement
parameters of the quantum dot. Atomic units are used in this paper.

2. Computational methodology

2.1. A short review of electrons in a harmonic oscillator potential

The Schrödinger equation for N electrons confined by a potential W is given by (in atomic
units)

[H(r) + W(r)]�(1, 2, . . . , N) = E�(1, 2, . . . , N), (1)

where the set (1, 2, . . . , N) denotes the orbital and the spin coordinates of the electrons. The
N-electron operatorsH represents the kinetic energy and the electron interaction described by

H(r) =
N∑

i=1

[
−1

2
∇2

i

]
+

N∑
i> j

[
1

|ri − r j |
]
, (2)

where r ≡ {r1, r2, . . . , rN } denotes the spatial coordinates of the electrons. The N-electron
interaction potential W is defined as the sum of one-electron contributions:

W(r) =
N∑

i=1

w(ri ). (3)
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The one-particle confining potential w(ri ) is written as a linear combination of powers of
electron coordinates:

w(ri ) = 1
2 [ωnx +1

x x2nx
i + ω

ny+1
y y

2ny

i + ωnz+1
z z2nz

i ], (4)

where ri = {xi, yi , zi }. The potential of equation (4) allows for the description of a wide
variety of physical situations, including quantum systems confined in spheres, ellipsoids and
(nano)tubes. All calculations in the present study have been performed for an anisotropic
harmonic oscillator potential centred at the origin of the coordinate system (nx = ny = nz =
1):

Vω(r) = 1
2 (ω2

x x2 + ω2
y y2 + ω2

z z2). (5)

For an electron confined in a harmonic oscillator potential the Schrödinger equation (1)
has a well known analytical solution. The eigenvalues are given by

Eω
0 = ωx(νx + 1/2) + ωy(νy + 1/2) + ωz(νz + 1/2). (6)

The eigenstates are labelled by a set of three harmonic oscillator quantum numbers
(νx , νy, νz). The eigenfunctions are given by a product of three Hermite–Gaussian functions:

χ �ω
�ν (�r) = N �ω

�ν Hνx (x)Hνy(y)Hνz(z) exp[− 1
2 (ωx x2 + ωy y2 + ωz z2)], (7)

where N �ω
�ν is a normalization constant and Hνx (x), etc, stand for a Hermite polynomial. The

lowest order Hermite polynomials are

H0(x) = 1, (8)

H1(x) = 2x, (9)

H2(x) = 4x2 − 2, (10)

H3(x) = 8x3 − 12x, (11)

H4(x) = 16x4 − 48x2 + 12. (12)

The eigenvalues for an electron confined in a spherical harmonic oscillator potential (ωx =
ωy = ωz = ω) are given by

Eω
0 = ω(2ν + � + 3/2). (13)

The eigenstates are labelled by the principal quantum number ν and the one-electron angular
momentum quantum number l with ν = 0, 1, 2, . . . and l = 0, 1, 2, . . . [49]. It is noted that
the one-electron orbitals are not ordered in the hydrogen-like, but in the following, sequence:

Eω
0 [0s] = (3/2)ω, (14)

Eω
0 [0p] = (5/2)ω, (15)

Eω
0 [0d] = Eω

0 [1s] = (7/2)ω, (16)

Eω
0 [0f] = Eω

0 [1p] = (9/2)ω, (17)

Eω
0 [0g] = Eω

0 [1d] = Eω
0 [3s] = (11/2)ω, . . . . (18)

The consecutive configuration energies Eω
0 [ν1�1ν2�2] for two non-interacting electrons are

Eω
0 [(0s)2] = 3ω, (19)

Eω
0 [0s0p] = 4ω, (20)

Eω
0 [0s1s] = Eω

0 [0s0d] = Eω
0 [(0p)2] = 5ω, (21)

Eω
0 [0s1p] = Eω

0 [1s0p] = Eω
0 [0s0f] = Eω

0 [0p0d] = 6ω, . . . . (22)

The degenerate energy levels are split due to the electron interaction. If this splitting is smaller
than that due to the Hooke’s law potential (i.e. if the separation between the extreme energies
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of the terms related to the same configuration is smaller than ω), then the consecutive singlet
energies are

Eω[S(0s)2] < Eω[P(0s0p)] < Eω[D(0s0d)]

< Eω[S(0s1s)] < Eω[S(0p)2] < Eω[D(0p)2] < · · · . (23)

The eigenvalues for an electron confined in an elliptical harmonic oscillator potential are
given by

Eω
0 = ω(νx + νy + 1) + ωz(νz + 1/2). (24)

The eigenstates are labelled by a set of three harmonic oscillator quantum numbers
(νx , νy, νz), or equivalently by specifying the z component of the one-electron angular
momentum quantum numbers as (ν, lz, νz), where ν = νx + νy and lz = ν, ν − 2, . . . , 0
or 1 for ν = even or odd. The orbital energies are expressed as a combination of two harmonic
oscillator sequences of ω and ωz , and orbitals belonging to the same (ν, νz) manifold with
different values of �z are degenerate. Two different types of elliptical confinement, i.e. prolate
type (ωx = ωy > ωz) and oblate type (ωx = ωy < ωz), have been studied in this contribution.
The ratio between the larger ω and the smaller ω has been chosen to be 0.5.

Using the potential defined by equation (5), the total energies of the confined quantum
system have been calculated as the eigenvalues of the CI matrix. The one-electron orbitals have
been obtained by solving the HF–Roothaan equations. All calculations have been performed
using OpenMol [50], an object-oriented programme developed in the Molecular Physics Group
of the Max-Planck-Institute for Astrophysics that has been extended to account for power series
one-electron potentials and anisotropic Gaussian basis functions. The electron density plots
have been generated by using the gOpenMol programme2. The full CI wavefunction has been
used in all calculations.

2.2. Basis-set

It is noted that a quantum chemical standard spherical or Cartesian Gaussian basis set is not
the most appropriate choice to expand the eigenfunctions of an electron in an anisotropic
harmonic oscillator potential given by equation (7). The inspection of the explicit form of the
eigenfunctions suggests expanding them in a properly constructed set of Cartesian anisotropic
Gaussian-type orbitals (c-aniGTO) [51, 52]. The following four types of basis sets have been
explored in an attempt to find the most suitable basis set for expanding the eigenfunctions of
an electron in an anisotropic harmonic oscillator potential:

• A basis set of c-aniGTO with one function for each type of orbital of the following general
form:

χ c
ani(�r) = xax yay zaz exp(−ζx x2 − ζy y2 − ζz z2). (25)

The orbital exponents are chosen to be (ζx, ζy, ζz) = (ωx/2, ωy/2, ωz/2). Following
the quantum-chemical convention, these orbitals are classified as s-, p-, d-type, . . .
for a = ax + ay + az = 0, 1, 2, . . ., respectively.

• A basis set of spherical anisotropic Gaussian-type orbitals (s-aniGTO) with one function
for each type of orbital of the following general form:

χ s
ani(�r) = r lYlm exp(−ζx x2 − ζy y2 − ζzz2), (26)

where Ylm is a real spherical harmonic. The product r lYlm can be expressed in terms
of a sequence of xyz Cartesian coordinates. The orbital exponents are chosen to be

2 gOpenMol Program; http://www.csc.fi/gopenmol/

http://www.csc.fi/gopenmol/
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Figure 1. Spectrum of one-electron quantum dot confined by a prolate-type elliptical harmonic
oscillator potential with (ωx , ωy , ωz) = (0.5, 0.5, 0.25) for different Cartesian anisotropic
Gaussian basis sets. The analytical spectrum labelled by the harmonic oscillator quantum numbers
(νx , νy , νz) is shown on the right-hand side. The states are labelled by their degeneracy in square
brackets. The total number of basis functions is given in round brackets.

(ζx, ζy, ζz) = (ωx/2, ωy/2, ωz/2). Following the quantum-chemical convention, these
orbitals are classified as s-, p-, d-type, . . . for l = 0, 1, 2, . . ., respectively.

• A basis set of s-aniGTO with a set of functions for each type of orbital.
• A basis set of conventional spherical Gaussian-type orbitals (s-GTO)

For the latter two basis sets the orbital exponents have been generated by using the
geometrical formula [53]

ζ j,� = α�β
j−1
� , j = 1, 2, . . . , m� (27)

where � = 0, 1, 2, 3, 4, 5, 6 corresponds, respectively, to s-, p-, d-, f-, g-, h-, i-type basis
functions. The minimum and maximum exponents have been chosen dynamically according
to the strength of confinement for s-aniGTOs as

ζ
{x,y,z}
min,� = 1

2ω{x,y,z}/c�, (28)

ζ
{x,y,z}
max,� = c� × 1

2ω{x,y,z}, (29)
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Figure 2. Spectrum of one-electron quantum dot confined by a prolate-type elliptical harmonic
oscillator potential with (ωx , ωy , ωz) = (0.5, 0.5, 0.25) for different spherical anisotropic Gaussian
basis sets. The analytical spectrum labelled by the harmonic oscillator quantum numbers
(νx , νy , νz) is shown on the right-hand side. The states are labelled by their degeneracy in square
brackets. The total number of basis functions is given in round brackets.

and for s-GTOs as

ζmin,� = min( 1
2 ωx ,

1
2ωy,

1
2ωz)/c�, (30)

ζmax,� = c� × max( 1
2ωx ,

1
2ωy,

1
2 ωz), (31)

where c� = 5, 5, 4, 3, 2, 1 for � = 0, 1, 2, 3, 4, 5, respectively. The present choice of the
minimum and maximum exponents differs slightly from that used in a previous study for
two-electron atoms in a spherical harmonic oscillator potential [46].

For different basis sets covering the four types listed above the energy spectrum has
been calculated for a prolate one-electron quantum dot with the confinement parameters (ωx ,
ωy , ωz) = (0.50, 0.50, 0.25). The results are displayed in figures 1–4 and are compared
with the analytical energy spectrum. From figure 1 it is evident that the single-exponent
c-aniGTO basis set properly describes the displayed eigenstates of an electron in an anisotropic
harmonic oscillator potential. The energies calculated by using this basis set agree with the
analytical values within numerical errors. It is noticed that, for the two smallest basis sets,
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Figure 3. Spectrum of one-electron quantum dot confined by a prolate-type elliptical harmonic
oscillator potential with (ωx , ωy , ωz) = (0.5, 0.5, 0.25) for different spherical anisotropic Gaussian
basis sets. The analytical spectrum labelled by the harmonic oscillator quantum numbers
(νx , νy , νz) is shown on the right-hand side. The states are labelled by their degeneracy in square
brackets. The total number of basis functions is given in round brackets.

some of the displayed higher states are absent (compare the numbers in brackets). This is to be
expected because these basis sets cannot describe the higher Hermite functions representing the
corresponding eigenfunctions. The energy spectrum of a one-electron quantum dot calculated
by using a basis set of single-exponent s-aniGTOs is presented in figure 2. It demonstrates
that the single-exponent s-aniGTO basis set describes correctly only part of the eigenstates of
an electron in an anisotropic harmonic oscillator potential while others are either completely
absent or not described correctly. It is noticed that a state, once present, does not change its
value with increasing basis set size. Again, this is expected for this single-exponent basis set
because the spherical harmonics present in these basis sets cannot or not fully describe the
corresponding Hermite functions. From figure 3 it is seen that the largest multiple-exponent
s-aniGTO basis set correctly describes the energy spectrum except for one of the highest states
studied. While for the single-exponent s-aniGTO basis set a state, once it is present, does
not change its value, it converges in the present case to the analytical value with increasing
basis set size with an accuracy δE < 1.0 × 10−4. The energy spectra of an electron in an
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Figure 4. Spectrum of one-electron quantum dot confined by a prolate-type elliptical harmonic
oscillator potential with (ωx , ωy , ωz) = (0.5, 0.5, 0.25) for different conventional spherical
Gaussian basis sets. The analytical spectrum labelled by the harmonic oscillator quantum numbers
(νx , νy , νz) is shown on the right-hand side. The states are labelled by their degeneracy in square
brackets. The total number of basis functions is given in round brackets.

anisotropic elliptical harmonic oscillator potential calculated by using a standard quantum
chemical standard basis set are shown in figure 4. The results displayed clearly demonstrate
that even the largest basis set of 147 functions containing up to h-type orbitals cannot describe
correctly the energy spectrum. The eigenstates calculated by using this large basis set are
shifted and split increasingly for higher lying states. The results become even worse for an
elliptical potential with larger anisotropy.

The energy spectra of a prolate two-electron quantum dot with the same confinement
parameters as in the one-electron case are displayed for different size single-exponent
c-aniGTO basis sets, the largest multiple-exponent s-aniGTO basis set and the largest s-GTO
basis set in figure 5. The results presented show that the energy spectra calculated by using the
c-aniGTO basis sets converge for increasing size of the basis set and that the energy spectrum
calculated by the largest c-aniGTO basis set of 84 functions is almost identical to that calculated
by using the largest s-aniGTO basis set, having 147 functions. This again demonstrates that
conventional s-GTO basis sets cannot approximate correctly the electronic wavefunction of
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Figure 5. Spectrum of two electrons confined by a prolate-type elliptical harmonic oscillator
potential with (ωx , ωy , ωz) = (0.5, 0.5, 0.25) for different basis sets. The total number of basis
functions is given in round brackets.

quantum systems in anisotropic harmonic oscillator potentials. Throughout the present study
the single-exponent c-aniGTO basis set of 84 functions has been used.

3. Results and discussion

3.1. Hartree–Fock orbitals

The closed-shell HF orbitals for two electrons confined by a spherical harmonic oscillator
potential, i.e. for a spherical quantum dot, with the confinement parameters (ωx , ωy, ωz) =
(0.25, 0.25, 0.25) are shown in figure 6. The density distribution is displayed in cubes with a
side length of 16 au. The z axis is directed along the vertical edge of the cube. The electron
density at the surface is 1.0 × 10−4. The orbitals are labelled by their quantum numbers ν and
� defined previously, with the difference that ν ′ = ν + 1 has been used to label the states with
the one-electron principal quantum numbers ν = 0, 1, 2, . . .. The HF orbitals are displayed
upwards in increasing order of orbital energy. It is noticed that the order differs from that of
the hydrogen-like sequence and that the 2s and 1d HF orbitals are not energetically degenerate
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Figure 6. HF orbital density distribution for two electrons confined by a spherical harmonic
oscillator potential with (ωx , ωy , ωz) = (0.25, 0.25, 0.25). The 1s orbital is occupied, while the
other orbitals are virtual. The density at the surface shown is 1.0 × 10−4.

as the eigenfunctions of an electron in an isotropic harmonic oscillator potential. The orbitals
show the same shape as the hydrogen-like orbitals with the same angular momentum quantum
numbers.

The HF orbitals for a prolate and an oblate quantum dot are displayed in figure 7. The
confinement parameters are (0.5, 0.5, 0.25) and (0.25, 0.25, 0.5), respectively. The notation
[ν, νz]
 is used for labelling the one-electron orbitals, where ν and νz are the quantum numbers
defined previously and 
 represents a symmetry label of the D∞h symmetry group. It is noted
that, for the prolate quantum dot, the following three groups of orbitals (i) [0, 2]σg and [1, 0]πu,
(ii) [0, 3]σu and [1, 1]πg, (iii) [0, 4]σg, [1, 2]πu, [2, 0]δg and [2, 0]σg, which are energetically
degenerate for the one-electron quantum dot, are not degenerate in the HF approximation due
to the presence of electron–electron interactions. Similarly, for the oblate quantum dot the two
groups of orbitals (i) [2, 0]δg, [2, 0]σg, and [0, 1]σu and (ii) [3, 0]φu, [3, 0]πu and [1, 1]πg are
not degenerate in the HF approximation. An inspection of figure 7 reveals several interesting
features: the orbitals of the prolate quantum dot are stretched along the z axis, while those
of the oblate quantum dot are compressed with respect to this axis, as is to be expected.
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Figure 7. HF orbital density distribution for two electrons confined by a prolate-type and
an oblate-type elliptical harmonic oscillator potential with (ωx , ωy, ωz) = (0.5, 0.5, 0.25) and
(0.25, 0.25, 0.5), respectively. The [0, 0]σg orbital is occupied, while the other orbitals are virtual.
The density at the surface shown is 1.0 × 10−4.

The nodal planes of the orbitals of the prolate quantum dot tend to be aligned in the xy plane
while those of the oblate quantum dot tend to be aligned in the xz and yz planes, respectively.
These observations are confirmed by the angular momentum quantum numbers of the orbitals.
The highest angular momentum quantum number among the 10 lowest orbitals of the prolate
quantum dot is l = 2 (δ state), while that for the oblate quantum dot is as large as l = 4
(γ state). The relation between the labels of the orbitals and the number of nodal planes is as
follows: the number of horizontal nodal planes is equal to the νz quantum number, while the
number of vertical nodal planes is equal to the ν quantum number except for the [2, 0]σg state
having a ‘circular node’ with respect to the z axis.

The correspondence between the HF orbitals of the spherical, prolate and oblate quantum
dots is shown in figure 8. The 1s orbital of the spherical quantum dot corresponds to the
[0, 0]σg orbital of both the prolate and the oblate quantum dot. The [0, 0]σg orbital of the
prolate quantum dot is extended along the z axis and the orbital of the oblate quantum dot
is compressed with respect to it. The triply degenerate 1p orbitals of the spherical quantum
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Figure 8. Correspondence between the HF orbitals of a spherical, a prolate and an oblate quantum
dot.

dot correspond to the [0, 1]σu orbital and the doubly degenerate [1, 0]πu orbitals of both the
prolate and the oblate quantum dot. However, while the [0, 1]σu orbital has a lower orbital
energy than the [1, 0]πu orbital in the case of the prolate quantum dot, the order is reversed for
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Figure 9. Correspondence between the HF orbitals of a spherical, a prolate and an oblate quantum
dot.

the oblate quantum dot. Correspondingly, the 1d orbitals of the spherical quantum dot are split
into three sets of orbitals, [0, 2]σg, [1, 1]πg and [2, 0]δg for the prolate and oblate quantum dot,
the 1f orbitals are split into four sets, and so on.

The correspondence between the topological structure of the spherical-, prolate- and
oblate-type HF orbitals and the number of nodal planes shows some interesting features: for 1�

(� = s, p, d, f) orbitals with no radial node, the spherical orbitals transform into prolate- and
oblate-type orbitals, respectively, by preserving the number of horizontal and vertical nodal
planes. For example, the 1d3z2−r2 spherical orbital that has two horizontal nodal planes and
no vertical nodal plane corresponds to the [0, 2]σg orbital of the prolate quantum dot that has
the same number of horizontal and vertical nodal planes, and the 1dxy and 1dx2−y2 orbitals
that have two vertical and no horizontal nodal planes correspond to the [2, 0]δg orbitals of the
oblate quantum dot that have the same number and type of nodal planes. The corresponding
relation between orbitals that have radial nodes is more complex. The correspondence of the 2s
orbital to the [2, 0]σg orbital of the prolate and oblate quantum dot, respectively, is displayed
in figure 9. It is noted that the radial node of the orbital is deformed vertically, resulting in a
circular node around the z axis as the spherical confining potential is changed to a prolate-type
and an oblate-type elliptical potential.
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Figure 10. Spectra of two electrons confined by a spherical harmonic oscillator potential with
ω = 0.1, 0.2, 0.3, 0.4, and 0.5.

3.2. Energy spectra and electron-density distributions

3.2.1. Spherical quantum dots. The energy spectra for the lowest six singlet states of
two electrons confined by a spherical potential with different values of (ωx , ωy, ωz) =
(ω, ω,ω), 0.0 � ω � 0.5, are displayed in figure 10. It is noted that the absolute energies
and the spacing between adjacent energy levels increases as the strength of the confinement
ω increases. This is expected, of course, from a simple particle in a box model. The lowest
six states are 1 1S, 1 1P, 1 1D, 2 1S, 3 1S and 2 1D, where the first number counts the states,
separately for each symmetry, in increasing order of energy. The sequence of the lowest four
states is the same as that of the orbital energies, i.e. 1s < 1p < 1d < 2s, as shown in figure 8,
but this is not true for the higher states.

The two leading configurations and their contributions to the CI wavefunction of the
lowest six singlet states confined by a spherical potential with ω = 0.5 are listed in table 1.
The CI wavefunction of the lowest two states, 1 1S and 1 1P, is completely dominated by one
configuration, namely (1s)2 and (1s)(1p), respectively. On the other hand, the CI wavefunction
of the four other states, 1 1D, 2 1S, 3 1S and 2 1D, is dominated by two configurations. The
(1p)2 configuration gives rise to one S and one D state, each of which interacts with the S state
of (1s)2 configuration and the D state of (1s)(1d) configuration, respectively, resulting in two
S states (2 1S and 3 1S) and two D states (1 1D and 2 1D). This large configuration mixing
may be ascribed to the fact that the excitation energy from the lowest 1s orbital to the 1d and 2s
orbitals, 1.214 and 1.251, respectively, is close to twice that of the 1p orbital of 0.766.
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Figure 11. Electron-density distribution and energy diagram for two electrons confined by a
spherical harmonic oscillator potential with ω = 0.1 (left) and 0.5 (right). The density at the
surface shown is 1.0 × 10−4.

The electron-density distribution of two electrons confined by a spherical potential with
ω = 0.1 and 0.5 is shown in figure 11 together with the diagram of the corresponding CI
energies. The electron-density distribution is displayed in the same way as for the HF orbitals.
The axes of the energy diagram are scaled such the lowest and the highest states are on the
same level for ω = 0.1 and 0.5. The most striking observation is the compressed electron
density distribution for ω = 0.5 as compared to that for ω = 0.1. Another interesting feature
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Figure 12. Spectrum of two electrons confined by a prolate-type elliptical harmonic oscillator
potential with ω = 0.1, 0.2, 0.3, 0.4 and 0.5.

Table 1. The two leading configurations and the squared norms of the lowest six singlet states of
two electrons confined by a spherical harmonic oscillator potential with ω = 0.5.

State First configuration First norm Second configuration Second norm

1 1S (1s)2 0.974 (1p)2 0.024
1 1P (1s)(1p) 0.966 (1p)(1d) 0.022
1 1D (1s)(1d) 0.491 (1p)2 0.488
2 1S (1p)2 0.487 (1s)(2s) 0.485
3 1S (1s)(2s) 0.491 (1p)2 0.444
2 1D (1s)(1d) 0.480 (1p)2 0.477

observed immediately is the blurred nodal structure of the density distributions. A comparison
of the energy-level structure for ω = 0.5 to that for ω = 0.1 reveals that the energy-level
structure is not scalable with ω while for the one-electron quantum dot it scales exactly with
ω, as will be discussed later.

3.2.2. Prolate quantum dots. The energy spectra of the low lying singlet states of two
electrons confined by a prolate-type elliptical potential with (ωx , ωy, ωz) = (ω, ω, 0.5 ×
ω), 0.1 � ω � 0.5, are shown in figure 12. The electron density distribution of these states
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Figure 13. Electron-density distribution for two electrons confined by a prolate-type elliptical
harmonic oscillator potential with ω = 0.1 (left) and 0.5 (right). The density at the surface shown
is 1.0 × 10−4.

for ω = 0.1 and 0.5 and the corresponding energy diagram are displayed in figure 13. As
observed already in the case of the spherical quantum dot the energies and the spacing between
adjacent levels increase as ω increases. Similarly, as in the spherical case, no scalability of
the CI energies with ω is observed. However, in the case of the prolate quantum dot, the order
of the energy levels as well as the ratio of the spacings between energy levels differs between
ω = 0.1 and 0.5. For example, for ω = 0.1 the fourth to sixth levels in increasing order of CI
energy are 1 1�g < 1 1�u < 3 1�+

g , while those for ω = 0.5 are 1 1�u < 3 1�+
g < 1 1�g. A

reversed order of energy levels is also observed for the eighth to the eleventh levels.
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Table 2. The two leading configurations and their squared norms for the lowest seven singlet
states of two electrons confined by a prolate-type elliptical harmonic oscillator potential with
(ωx , ωy, ωz) = (0.5, 0.5, 0.25) and (0.1, 0.1, 0.05).

State First configuration First norm Second configuration Second norm

ω = 0.5

1 1�+
g ([0, 0]σg)

2 0.942 ([0, 1]σu)
2 0.037

1 1�+
u ([0, 0]σg)([0, 1]σu) 0.910 ([0, 1]σu)([0, 2]σg) 0.067

2 1�+
g ([0, 0]σg)([0, 2]σg) 0.489 ([0, 1]σu)

2 0.446

1 1�u ([0, 0]σg)([1, 0]πu) 0.937 ([0, 1]σu)([1, 1]πg) 0.038
3 1�+

g ([0, 0]σg)([0, 2]σg) 0.446 ([0, 1]σu)
2 0.399

1 1�g ([0, 0]σg)([1, 1]πg) 0.482 ([0, 1]σu)([1, 0]πu) 0.477
2 1�+

u ([0, 0]σg)([0, 3]σu) 0.729 ([0, 1]σu)([0, 2]σg) 0.200

ω = 0.1

1 1�+
g ([0, 0]σg)

2 0.778 ([0, 1]σu)
2 0.128

1 1�+
u ([0, 0]σg)([0, 1]σu) 0.683 ([0, 1]σu)([0, 2]σg) 0.199

2 1�+
g ([0, 0]σg)([0, 2]σg) 0.459 ([0, 1]σu)

2 0.311

1 1�g ([0, 0]σg)([1, 1]πg) 0.428 ([0, 1]σu)([1, 0]πu) 0.411
1 1�u ([0, 0]σg)([1, 0]πu) 0.762 ([0, 1]σu)([1, 1]πg) 0.126
3 1�+

g ([0, 0]σg)([0, 2]σg) 0.323 ([0, 1]σu)
2 0.196

2 1�+
u ([0, 0]σg)([0, 3]σu) 0.697 ([0, 1]σu)([0, 2]σg) 0.089

Again, the most striking observation from figure 13 is the compressed density distribution
for ω = 0.5 (right-hand side) as compared to those for ω = 0.1 (left-hand side). The shape of
the electron distributions of corresponding states for both values of ω are similar except that
the surface of the 1 1�+

g and the 1 1�+
u states for ω = 0.1 show a weak nodal pattern while

those for ω = 0.5 do not. The two leading configurations and their contribution to the CI
wavefunction of the lowest seven singlet states both for ω = 0.1 and 0.5 are listed in table 2.
The CI wavefunction of the ground 1 1�+

g state, the first excited 1 1�+
u state and the fourth

1 1�u state for ω = 0.5 are completely dominated by one configuration with a squared norm
larger than 0.9, namely ([0, 0]σg)

2, ([0, 0]σg)([0, 1]σu) and ([0, 0]σg)([1, 0]πu), respectively.
On the other hand, the same states for ω = 0.1 have non-negligible contributions from a second
configuration. It would be interesting to address the relation between the weak nodal pattern
observed for ω = 0.1 for the density surfaces of the 1 1�+

g and the 1 1�+
u state and their second

leading configuration. The electron-density surface of the 1 1�+
g state for ω = 0.1 has a weak

node around its centre, although the HF orbital of the first configuration [0, 0]σg has no node,
as seen from figure 7. On the other hand, the HF orbital of the second leading configuration
of this state, [0, 1]σu, has a node around its centre, as shown in the same figure. A similar
relation could be seen between the nodal pattern of the electron-density surface and the orbital
of the second leading configuration of the 1 1�+

u state for ω = 0.1.

3.2.3. Oblate quantum dots. The energy spectra for the lowest nine singlet states of two
electrons confined by an oblate-type elliptical potential with (ωx , ωy, ωz) = (0.5 × ω, 0.5 ×
ω,ω), 0.1 � ω � 0.5 are displayed in figure 14. The spectra show a behaviour similar to
that observed for the spherical and the prolate quantum dots: the energies and the spacing
between energy levels increase with increasing strength of the confinement. The electron-
density distributions for ω = 0.1 and 0.5 and the corresponding energy diagram are displayed
in figure 15. Again, the electron-density distribution for ω = 0.5 is strongly compressed as
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Figure 14. Spectrum of two electrons confined by an oblate-type elliptical harmonic oscillator
potential with ω = 0.1, 0.2, 0.3 0.4 and 0.5.

compared to that for ω = 0.1, as observed previously. The shape of all electron-density surfaces
displayed are compressed with respect to the z axis, as observed for the corresponding HF
orbitals shown in figures 7 and 8,but only small remnants of the nodal structure can be observed.

As found previously for spherical and prolate quantum dots the energy-level structure
does not scale with ω. Already the ordering of the first and second excited states reverses
between ω = 0.1 and 0.5. The ordering of the energy levels changes in a complicated way
for the fifth to eighth level between ω = 0.1 and 0.5. The two leading configurations and
their contributions to the CI wavefunction of the lowest nine singlet states for ω = 0.1 and 0.5
are listed in table 3. The CI wavefunction of the ground 1 1�+

g state and the first excited
1 1�u state for ω = 0.5 is dominated by a single configuration with a squared norm larger
than 0.9, namely ([0, 0]σg)

2 and ([0, 0]σg)([1, 0]πu), respectively. On the other hand, the same
states for ω = 0.1 have non-negligible contributions from a second configuration. The list of
configurations in table 3 shows that the ([1, 0]πu)

2 configuration plays an important role in
the four states, 1 1
g, 2 1�+

g , 2 1
g and 3 1�+
g . The ([1, 0]πu)

2 configuration gives rise to
one �g state and one 
g state, each of which may interact with the �g state originating from
the configuration ([0, 0]σg)([2, 0]σg) and with the 
g state originating from the configuration
([0, 0]σg)([2, 0]δg), respectively, resulting in two �g states (2 1�+

g and 3 1�+
g ) and two 
g states

(1 1
g and 2 1
g). This configuration mixing may be ascribed to the fact that the excitation
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Figure 15. Electron-density distribution for two electrons confined by an oblate-type elliptical
harmonic oscillator potential with ω = 0.1 (left) and 0.5 (right). The density at the surface shown
is 1.0 × 10−4.

energies from the lowest [0, 0]σg one-electron state to the [2, 0]δg and [2, 0]σg states of 0.645
and 0.667, respectively, are close to twice that of the [1, 0]πu state. The leading configurations
of these four states for ω = 0.1 are the same as those for ω = 0.5.

3.3. Scalability and electron correlation

It has been observed that the energy-level structure for all three types of two-electron quantum
dots for different ω does not scale with ω. However, in the case of one-electron quantum dots
the energy-level structure for ω1 and ω2 scales as ω1/ω2. As expected, the non-scalability
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Table 3. The two leading configurations and their squared norms for the lowest nine singlet
states of two electrons confined by an oblate-type elliptical harmonic oscillator potential with
(ωx , ωy, ωz) = (0.25, 0.25, 0.5) and (0.05, 0.05, 0.1)

State First configuration First norm Second configuration Second norm

ω = 0.5

1 1�+
g ([0, 0]σg)

2 0.946 ([1, 0]πu)
2 0.038

1 1�u ([0, 0]σg)([1, 0]πu) 0.925 ([1, 0]πu)([2, 0]δg) 0.039
1 1
g ([0, 0]σg)([2, 0]δg) 0.483 ([1, 0]πu)

2 0.474
2 1�+

g ([0, 0]σg)([2, 0]σg) 0.487 ([1, 0]πu)
2 0.457

1 1�+
u ([0, 0]σg)([0, 1]σu) 0.941 ([1, 0]πu)([1, 1]πg) 0.038

3 1�+
g ([0, 0]σg)([2, 0]σg) 0.461 ([1, 0]πu)

2 0.402

2 1
g ([0, 0]σg)([2, 0]δg) 0.453 ([1, 0]πu)
2 0.449

2 1�u ([1, 0]πu)([2, 0]σg) 0.469 ([0, 0]σg)([3, 0]πu) 0.240
1 1�u ([0, 0]σg)([3, 0]φu) 0.724 ([1, 0]πu)([2, 0]δg) 0.235

ω = 0.1

1 1�+
g ([0, 0]σg)

2 0.829 ([1, 0]πu)
2 0.107

1 1
g ([0, 0]σg)([2, 0]δg) 0.435 ([1, 0]πu)
2 0.406

1 1�u ([0, 0]σg)([1, 0]πu) 0.761 ([1, 0]πu)([2, 0]δg) 0.105
2 1�+

g ([0, 0]σg)([2, 0]σg) 0.460 ([1, 0]πu)
2 0.360

2 1�u ([1, 0]πu)([2, 0]σg) 0.385 ([0, 0]σg)([3, 0]πu) 0.227
1 1�u ([0, 0]σg)([3, 0]φu) 0.664 ([1, 0]πu)([2, 0]δg) 0.194
1 1�+

u ([0, 0]σg)([0, 1]σu) 0.804 ([1, 0]πu)([1, 1]πg) 0.106
3 1�+

g ([0, 0]σg)([2, 0]σg) 0.362 ([1, 0]πu)
2 0.227

2 1
g ([0, 0]σg)([2, 0]δg) 0.350 ([1, 0]πu)
2 0.341

of the spectrum of two-electron quantum dots with ω originates from the electron–electron
interaction.

The correlation energy and its percentage of the total CI energy as a function of ω for
a spherical, a prolate and an oblate quantum dot are displayed in figure 16. The correlation
energy for the free helium atom is shown for comparison. The correlation energy is defined as
the difference between the HF and the CI energy. This figure shows some interesting features:
the values of the correlation energy are comparable with that of the free helium atom and
increase for all cases as ω increases. The percentage of the correlation energy of quantum
dots is, in all cases, much larger than that for the free helium atom of approximately 1% for
weak confinement. This confirms the importance of electron correlation in the singlet states
of quantum dots as already observed in previous studies [29, 38, 39]. Its percentage decreases
in all cases with increasing ω, and consequently electron correlation becomes less important
for strong confinement [29, 38]. This is consistent with the observation made above that
configuration mixing is stronger for ω = 0.1 than for ω = 0.5.

The percentage of correlation energy of the spherical quantum dot is considerably smaller
than that of the prolate and the oblate quantum dots. This observation may be rationalized
by the effect of dimensionality [39]. As demonstrated previously for the rectangular box
model [38] and for the two-dimensional and three-dimensional harmonic oscillator quantum
dots [39], electron correlation plays a much larger role in the low-dimensional systems
than in the corresponding three-dimensional systems. In the limit the prolate and the
oblate harmonic oscillator quantum dots discussed above become one-dimensional and two-
dimensional quantum systems, respectively. Therefore, these systems have larger electron
correlation than the corresponding spherical quantum dot.
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Figure 16. Correlation energy of a spherical, a prolate and an oblate quantum dot as a function of
ω.

4. Summary

The spectrum, electron-density distribution and ground-state correlation energy of two
electrons confined by a spherical, a prolate and an oblate harmonic oscillator potential with
different values of ω have been studied by using the quantum-chemical CI method employing
a Cartesian anisotropic Gaussian basis set and a full CI wavefunction. The most important
results of this study are summarized as follows: a Cartesian anisotropic Gaussian basis set is
required to correctly approximate the electronic wavefunction of quantum systems confined
in an anisotropic harmonic oscillator potential. The total energy and spacing between energy
levels increases in all cases with increasing confinement strength ω. The energy level structure
cannot be matched by scaling with respect to ω. For spherical quantum dots the sequence
of states is the same within the range of ω studied. For prolate and oblate quantum dots
the sequence of states may vary for different values of ω. The electron-density distribution
becomes more and more compressed for increasing confinement strength. The correlation
energy of the ground state is comparable in magnitude to that of the helium atom. It increases
for increasing ω. The percentage of the correlation energy with respect to the total energy of
the ground state is considerably larger than that of the helium atom. For the spherical quantum
dot it is considerably smaller than for the other cases. The correlation energy for the prolate
and oblate quantum dots differs considerably while its percentage is nearly identical.
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